Tuning Ferritin's band gap through mixed metal oxide nanoparticle formation.
نویسندگان
چکیده
This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with [Formula: see text] in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin's potential in solar-energy harvesting. Additionally, the success of using [Formula: see text] in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.
منابع مشابه
Permanganate-Based Synthesis of Semiconducting Metal Oxide Nanoparticles in the Protein Ferritin
Permanganate-Based Synthesis of Semiconducting Metal Oxide Nanoparticles in the Protein Ferritin Cameron Olsen Department of Physics and Astronomy, BYU Bachelor of Science This thesis investigates the reactions of Mn2+ and Co2+ with permanganate as a route for manganese and cobalt oxide nanoparticle synthesis in the protein ferritin. Permanganate serves as the electron acceptor and reacts with ...
متن کاملMetal-organic frameworks of cobalt and nickel centers with carboxylate and pyridine functionality linkers: Thermal and physical properties; precursors for metal oxide nanoparticle preparation
This article provides an overview on preparation, design, crystal structure and properties of some metal-organic frameworks of carboxylate coordination polymers mixed with pyridine-functionality linkers prepared in our laboratory. The article covers coordination polymers in two- and three-dimensional supramolecular architectures. The reported coordination polyme...
متن کاملFinal state effects in VUV and soft X-ray absorption spectra of transition metal oxides and silicate alloys: comparisons between experiment and ab initio calculations
This paper uses X-ray absorption spectroscopy and vacuum ultra-violet spectroscopic ellipsometry to study the electronic structure of high-k transition metal (TM) oxide gate dielectrics. The results are applicable to TM and rare earth (RE) silicate and aluminate alloys, as well as complex oxides comprised of mixed TM/TM and TM/RE oxides. These studies identify the nature of the lowest conductio...
متن کاملSynthesis and physicochemical properties of CuMn2O4 nanoparticles; a potential semiconductor for photoelectric devices
CuMn2O4 nanoparticles, a semiconducting materials with tunable functionalities in solid oxide fuel cell, was successfully synthesized via a sol-gel method using its respective metal cations sources i.e. Cu2+ and Mn2+ in an appropriate complexing agent.The vibrational frequencies below 1000 cm-1 of the obtained materials confirmed the formation of metal-oxygen (M-O:Cu-O, Mn-O) bond in the sample...
متن کاملElectric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal
An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of arou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 28 19 شماره
صفحات -
تاریخ انتشار 2017